Abstract

Water-induced electricity harvesting has gained much significance for energy sustainability. Bio-based hydrovoltaic materials increase the attractiveness of this strategy. Although promising, it faces a challenge due to its reliance on fresh water and its inherently low power output. Herein, the energy from alkalinity-gradient power generation demonstrated the feasibility of reuse of alkaline wastewater to develop an all-wood-based water-induced electric generator (WEG) based on ion concentration gradients. The intermittent water droplets bring about uneven distribution of electrolyte and endow delignified wood with the difference of ion concentration along aligned cellulose nanochannels, thus supplying electrical power. The practice of using alkali reservoirs, including industrial wastewater, further contributes to electricity generation. The cubic WEG with a side length of 2 cm can produce an ultrahigh open-circuit voltage of about 1.1 V and a short-circuit current of up to 320 μA. A power output of 6.75 μW cm-2 is correspondingly realized. Series-connected WEGs can be used as an energy source for commercial electronics and self-powered systems. Our design provides a double value proposition, allowing for sustainable energy generation and wastewater reuse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call