Abstract
Water-induced electricity harvesting has gained much significance for energy sustainability. Bio-based hydrovoltaic materials increase the attractiveness of this strategy. Although promising, it faces a challenge due to its reliance on fresh water and its inherently low power output. Herein, the energy from alkalinity-gradient power generation demonstrated the feasibility of reuse of alkaline wastewater to develop an all-wood-based water-induced electric generator (WEG) based on ion concentration gradients. The intermittent water droplets bring about uneven distribution of electrolyte and endow delignified wood with the difference of ion concentration along aligned cellulose nanochannels, thus supplying electrical power. The practice of using alkali reservoirs, including industrial wastewater, further contributes to electricity generation. The cubic WEG with a side length of 2 cm can produce an ultrahigh open-circuit voltage of about 1.1 V and a short-circuit current of up to 320 μA. A power output of 6.75 μW cm-2 is correspondingly realized. Series-connected WEGs can be used as an energy source for commercial electronics and self-powered systems. Our design provides a double value proposition, allowing for sustainable energy generation and wastewater reuse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.