Abstract

Electron beam lithography uses an accelerated electron beam to fabricate patterning on an electron-beam-sensitive resist but requires complex dry etching or lift-off processes to transfer the pattern to the substrate or film on the substrate. In this study, etching-free electron beam lithography is developed to directly write a pattern of various materials in all-water processes, achieving the desired semiconductor nanopatterns on a silicon wafer. Introduced sugars are copolymerized with metal ions-coordinated polyethylenimine under the action of electron beams. The all-water process and thermal treatment result in nanomaterials with satisfactory electronic properties, indicating that diverse on-chip semiconductors (e.g., metal oxides, sulfides, and nitrides) can be directly printed on-chip by an aqueous solution system. As a demonstration, zinc oxide patterns can be achieved with a line width of 18 nm and a mobility of 3.94 cm2 V-1 s-1. This etching-free electron beam lithography strategy provides an efficient alternative for micro/nanofabrication and chip manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.