Abstract

Integrated optics is at the heart of a wide range of systems from remote sensing and communications to computing and quantum information processing. Demand for smaller and more energy efficient structures stimulates search for more advanced material platforms. Here, we propose a concept of an all van der Waals photonics, where we show that electronically bulk transition metal dichalcogenide (TMDC) semiconductors are well fitted for the design of key optical components for nanoscale and integrated photonics. Specifically, we demonstrate theoretically that owing to low optical loss and high refractive index across near-infrared and telecom frequency bands, components made of bulk TMDCs can potentially outperform counterparts made of conventional 3D semiconductors, such as Si and III/Vs. We discuss several key quantum and classical optical components and show that bulk TMDCs may pave the way to smaller footprint devices, more energy efficient electro-optical modulators, and stronger quantum light-materials interaction. Enhanced optical performance, ease of integration, and a wide selection of materials suggest that bulk TMDCs may complement and, potentially, replace existing integrated photonics systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call