Abstract
Restricted feeding (RF), a regimen that restricts the duration of food availability with no calorie restriction, entrains the circadian clock in peripheral tissues. Restricted feeding leads to high-amplitude circadian rhythms, which have been shown to promote wellness and reduce disease and inflammatory markers. Retinoids, such as all-trans retinoic acid (ATRA), act as anti-inflammatory agents. Thus far, the effect of ATRA combined with RF on the ability to delay the occurrence of age-associated changes, such as cancer and inflammation, is not known. We measured circadian expression of clock genes, disease marker genes and inflammatory markers in the serum, liver and jejunum in mice fed ad libitum (AL) or RF supplemented with 15 or 250 μg/kg body/day ATRA for 16 weeks. Our results show that ATRA supplementation led to phase shifts and reduced amplitudes in clock genes. Under AL, ATRA reduced the average daily messenger RNA (mRNA) levels of some disease markers, such as liver Afp and jejunum Afp, Alt and Gadd45β and aspartate transaminase (AST) protein in the serum, but increased the expression level of liver Crp mRNA. Under RF, ATRA reduced the average daily levels of jejunum Alt and Gadd45β and AST protein in the serum, but increased liver Afp, Alt, Gadd45β and Arginase mRNA. Altogether, our findings suggest that ATRA strongly affects circadian oscillation and disease marker levels. Moreover, its impact is different depending on the feeding regimen (AL or RF).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.