Abstract

BackgroundDecitabine (DAC) is used as the first-line therapy in patients with higher-risk myelodysplastic syndromes (HR-MDS) and elderly acute myeloid leukaemia (AML) patients unsuitable for intensive chemotherapy. However, the clinical outcomes of patients treated with DAC as a monotherapy are far from satisfactory. Adding all-trans retinoic acid (ATRA) to DAC reportedly benefitted MDS and elderly AML patients. However, the underlying mechanisms remain unclear and need further explorations from laboratory experiments.MethodsWe used MDS and AML cell lines and primary cells to evaluate the combined effects of DAC and ATRA as well as the underlying mechanisms. We used the MOLM-13-luciferase murine xenograft model to verify the enhanced cytotoxic effect of the drug combination.ResultsThe combination treatment reduced the viability of MDS/AML cells in vitro, delayed leukaemia progress, and extended survival in murine xenograft models compared to non- and mono-drug treated models. DAC application as a single agent induced Nrf2 activation and downstream antioxidative response, and restrained reactive oxygen species (ROS) generation, thus leading to DAC resistance. The addition of ATRA blocked Nrf2 activation by activating the RARα-Nrf2 complex, leading to ROS accumulation and ROS-dependent cytotoxicity.ConclusionsThese results demonstrate that combining DAC and ATRA has potential for the clinical treatment of HR-MDS/AML and merits further exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call