Abstract
Topical tretinoin therapy produces clinical improvements in the fine wrinkling of photodamaged skin, possibly by enhancement of collagen synthesis. A major biochemically and histologically detectable change in photodamaged skin is the accumulation of abnormal elastic fibers (elastotic material). However, little is known about the effects of retinoic acid and ultraviolet B (UVB) on elastin gene expression. Consequently, we examined the effects of all- trans-retinoic acid (t-RA) and UVB on elastin gene expression in cultured human skin fibroblasts in vitro. Elastin mRNA gene expression was up-regulated in response to UVB by ≈3-fold, in a dose dependent manner, between 3 and 10 mJ/cm 2 doses. Similar results were obtained by chloramphenicol acetyltransferase assay, in which a maximal promoter activation more than 5.4-fold that in nonirradiated controls occurred after a single dose of 20 mJ/cm 2. Also, t-RA inhibited the increase in elastin mRNA level following a single exposure to UVB by approximately 16%, and the increase in promotor activity by about 65%. The inhibitory effect of t-RA on elastin induced by UVB was also demonstrated by indirect immunofluorescence studies. Taken together, t-RA down-regulated human elastin gene expression elevated by a single exposure to UVB at transcriptional and possibly protein levels. These results suggest that the anti-photoaging effect of t-RA may be related, at least in part, to down-regulation of elastin gene expression elevated by UVB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.