Abstract

AbstractAn all speed scheme for the Isentropic Euler equations is presented in this paper. When the Mach number tends to zero, the compressible Euler equations converge to their incompressible counterpart, in which the density becomes a constant. Increasing approximation errors and severe stability constraints are the main difficulty in the low Mach regime. The key idea of our all speed scheme is the special semi-implicit time discretization, in which the low Mach number stiff term is divided into two parts, one being treated explicitly and the other one implicitly. Moreover, the flux of the density equation is also treated implicitly and an elliptic type equation is derived to obtain the density. In this way, the correct limit can be captured without requesting the mesh size and time step to be smaller than the Mach number. Compared with previous semi-implicit methods, firstly, nonphysical oscillations can be suppressed by choosing proper parameter, besides, only a linear elliptic equation needs to be solved implicitly which reduces much computational cost. We develop this semi-implicit time discretization in the framework of a first order Local Lax-Friedrichs (or Rusanov) scheme and numerical tests are displayed to demonstrate its performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.