Abstract

We prepare an all solid-state, liquid-free, polymer electrolyte (ASPE) from a lithium salt and a graft copolymer consisting of a polyimide main chain and poly(ethylene glycol) methyl ether methacrylate side chains using atom transfer radical polymerization method. The ionic conductivity of ASPEs increases with increasing the side chain length. The ionic conductivity of the ASPE whose POEM content = 60 wt% shows 6.5 × 10 −6 S/cm at 25 °C. The ASPEs having shorter average distance between side chains and/or shorter side chain length show higher mechanical strength. The tensile strength of the ASPEs is more than 10 MPa and about 20 times higher than that of the ASPEs in the previous study [Electrochim. Acta, 50 (1998) 3832]; hence, the ASPEs have sufficiently high mechanical strength for a polymer electrolyte of lithium secondary batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.