Abstract

A novel multipath Mach–Zehnder interferometer (m-MZI) is proposed and experimentally demonstrated, which is fabricated by fusion splicing a segment of all-solid multi-core fiber (MCF) between two sections of single mode fiber-28 with a well-controlled lateral offset at the splice points. Beam propagation method-based simulation results demonstrated light passing throw MCF from multiple paths. Experiments with different lengths of MCF were implemented to investigate our proposed m-MZI’s response to temperature and strain. Compared with previously reported optical fiber modal interferometers, higher phase sensitivity can be obtained in our scheme due to the multipath interference configuration embedded in one fiber. A very high temperature sensitivity of 130.6 pm/°C has been achieved, and the maximum strain sensitivity is less than 0.284 pm/μe in all experiments. A record low strain-to-temperature cross-sensitivity of 6.2 × 10−4 °C/μe has been realized, and it shows great significance of this in-fiber integrated multipath Mach–Zehnder interferometer in practical temperature sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.