Abstract

We propose 1D periodic, highly doped InAsSb gratings on GaSb substrates as biosensing platforms applicable for surface plasmon resonance and surface enhanced infrared absorption spectroscopies. Based on finite-difference time-domain simulations, the electric field enhancement and the sensitivity on refractive index variations are investigated for different grating geometries. The proposed, optimized system achieves sensitivities of 900 nm RIU-1. A clear red shift of the plasmon resonance as well as the enhancement of an absorption line are presented for 2 nm thin adlayers in simulations. We experimentally confirm the high sensitivity of the InAsSb grating by measurements of the wavelength shift induced by a 200 nm thin polymethylmethacrylate layer and demonstrate an enhancement of vibrational signals. A comparison to a gold grating with equivalent optical properties in the mid-infrared is performed. Our simulations and experimental results underline the interest in the alternative plasmonic material InAsSb for highly sensitive biosensors for the mid-infrared spectral range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.