Abstract

Red-light responsiveness of photoswitches is a highly desired property for many important application areas such as biology or material sciences. The main approach to elicit this property uses strategic substitution of long-known photoswitch motives such as azobenzenes or diarylethenes. Only very few photoswitches possess inherent red-light absorption of their core chromophore structures. Here, we present a strategy to convert the long-known purple indirubin dye into a prolific red-light-responsive photoswitch. In a supramolecular approach, its photochromism can be changed from a negative to a positive one, while at the same time, significantly higher yields of the metastable E-isomer are obtained upon irradiation. E- to Z-photoisomerization can then also be induced by red light of longer wavelengths. Indirubin therefore represents a unique example of reversible photoswitching using entirely red light for both switching directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.