Abstract

Biodegradable polyhydroxyalkanoate (PHA) homopolymers and statistical copolymers are ubiquitous in microbially produced PHAs, but the step-growth polycondensation mechanism the biosynthesis operates on presents a challenge to access well-defined block copolymers (BCPs), especially higher-order tri-BCP PHAs. Here we report a stereoselective-chemocatalytic route to produce discrete hard-soft-hard ABA all-PHA tri-BCPs based on the living chain-growth ring-opening polymerization of racemic (rac) 8-membered diolides (rac-8DLR; R denotes the two substituents on the ring). Depending on the composition of the soft B block, originated from rac-8DLR (R = Et, nBu), and its ratio to the semicrystalline, high-melting hard A block, derived from rac-8DLMe, the resulting all-PHA tri-BCPs with high molar mass (Mn up to 238 kg mol-1) and low dispersity (Đ = 1.07) exhibit tunable mechanical properties characteristic of a strong and tough thermoplastic, elastomer, or a semicrystalline thermoplastic elastomer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call