Abstract

We report a self-starting mode-locked all-polarization-maintaining (PM) holmium (Ho)-doped fiber oscillator operating at ∼2.08 µm based on nonlinear polarization evolution (NPE). The oscillator is configured as a linear cavity structure with two output ports exhibiting completely different pulse characteristics. One output port of the oscillator can deliver a stable, clean soliton-like pulse with a pulse duration of 439 fs and an average power of 7.5 mW at a fundamental repetition rate of 61.67 MHz. In contrast, the other port delivers a low-quality pulse with a complex structure. Numerical simulations reveal that the pulse difference between the two ports is mainly caused by the nonlinear optical interactions between the slow-axis and fast-axis modes in the PM fibers. Furthermore, the obtained clean pulses show significant improvements in relative intensity noise and power stability compared to complex pulses. Our study can help researchers obtain high-quality, stable pulses from PM-NPE mode-locked fiber oscillators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call