Abstract

LCL filters are commonly used to connect voltage-sourced converters (VSCs) to the grid. This type of filter is cheaper than a single inductor for the same current total harmonic distortion (THD), but it generates resonance problems if no active or passive damping method is applied. Active damping methods are becoming popular in the literature because they improve efficiency, but they are sometimes difficult to implement and additional measurements are required. This paper proposes an active damping method for VSCs connected to weak grids, which is based on making the open-loop phase zero at the resonance frequency. It will be shown that this strategy provides adequate damping of oscillations and that it can be achieved in two different ways: at the design stage (if the design constraints make it possible) or with an all-pass filter in series with the current controller. Two methods to design the all-pass filter are proposed. Also, the proposed active damping technique is compared with three alternatives already proposed in the literature. All the control algorithms are verified by simulation and in a 15-kW prototype of a three-phase VSC connected to a configurable weak grid via an LCL filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.