Abstract

In all-oxide-based spintronic devices, large exchange bias effect with robustness against temperature fluctuation and compatibility with perpendicular magnetic recording is highly desired. In this work, rock-salt antiferromagnetic NiO with a Néel temperature ( TN) of ∼525 K and spinel ferrimagnetic NiFe2O4 with a high Curie temperature, TC, ≈ 790 K and TC > TN were chosen as compatible materials to form a well-phase-separated, vertically aligned nanocomposite thin film. In this nanoengineered thin film, an exchange bias effect with a blocking temperature far above room temperature has been achieved. A large perpendicular exchange bias field of up to 0.91 kOe with an interfacial exchange energy density of 0.11-0.34 erg/cm2 was obtained at room temperature. It was also demonstrated that the exchange bias effect can be easily tuned by changing the alignment of the magnetic moments in the NiO phase using substrates of different crystalline orientations and by changing the microstructure of the film with substrates of different lattice parameters. The results demonstrate that proper choice of the phases (including use of nonperovskite compositions) and careful strain engineering and nanostructure engineering makes oxide nanocomposites strong potential candidate systems for next generation spintronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.