Abstract
The neuromorphic system processes enormous information even with very low energy consumption, which practically can be achieved with photonic artificial synapse. Herein, a photonic artificial synapse is demonstrated based on an all-oxide highly transparent device. The device consists of conformally grown In2O3/ZnO thin films on a fluorine-doped tin oxide/glass substrate. The device showed a loop opening in current-voltage characteristics, which was attributed to charge trapping/detrapping. Ultraviolet illumination-induced versatile features such as short-term/long-term plasticity and paired-pulse facilitation were truly confirmed. Further, photonic potentiation and electrical habituation were implemented. This study paves the way to develop a device in which current can be modulated under the action of optical stimuli, serving as a fundamental step toward the realization of low-cost synaptic behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.