Abstract

We give a complete, self-contained, and mathematically rigorous proof that Euclidean Yang-Mills theories are perturbatively renormalisable, in the sense that all correlation functions of arbitrary composite local operators fulfil suitable Ward identities. Our proof treats rigorously both all ultraviolet and infrared problems of the theory and provides, in the end, detailed analytical bounds on the correlation functions of an arbitrary number of composite local operators. These bounds are formulated in terms of certain weighted spanning trees extending between the insertion points of these operators. Our proofs are obtained within the framework of the Wilson-Wegner-Polchinski-Wetterich renormalisation group flow equations, combined with estimation techniques based on tree structures. Compared with previous mathematical treatments of massless theories without local gauge invariance [R. Guida and Ch. Kopper, arXiv:1103.5692; J. Holland, S. Hollands, and Ch. Kopper, Commun. Math. Phys. 342 (2016) 385] our constructions require several technical advances; in particular, we need to fully control the BRST invariance of our correlation functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call