Abstract

The fungicidal activity of Bacillus subtilis QST713 has been utilized for the highly effective and environmentally safe protection of crops against a variety of pathogens. It is based mainly on the production of cyclic lipopeptides of the fengycin (FEs), surfactin, and iturin families. The mixed population of native FEs forms micelles which solubilize individual FEs such as agrastatin 1 (AS1) that are otherwise rather insoluble on their own. Fluorescence lifetime-based calcein efflux measurements and cryo transmission electron microscopy show that these FEs show a unique scenario of membrane permeabilization. Poor miscibility of FEs with lipid probably promotes the formation of pores in 10% of the vesicles at only ≈ 1 μM free FE and in 15% of the vesicles at 10 μM. We explain why this limited, all-or-none leakage could nevertheless account for the killing of virtually all fungi whereas the same extent of graded vesicle leakage may be biologically irrelevant. Then, crystallization of AS1 and micellization of plipastatins cause a cut-off in leakage at 15% that might regulate the biological activity of FEs, protecting Bacillus and plant membranes. The fact that FE micelles solubilize only about 10 mol-% fluid lipid resembles the behavior of detergent resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.