Abstract

In this paper, we propose to implement an all-optical XOR gate for 160 Gb/s return-to-zero data signals using a single quantum-dot semiconductor optical amplifier (QD-SOA) assisted by a detuned optical filter (OF). These two elements are connected in series in a probe-dual pump configuration. By conducting numerical simulations, we thoroughly investigate and assess the impact of the critical performance parameters on the Q <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -factor. The analysis of the obtained results against this metric enables us to specify the data signals peak power, QD-SOA small signal gain, current density, electron relaxation time from the excited state to the ground state and linewidth enhancement factor, and OF detuning, bandwidth and shape, for which the XOR logic is executed at the target data format and rate both with logical correctness and high quality. The confirmation of its design feasibility combined with its simplicity and ultrafast capability makes the XOR gate scheme promising for exploitation in all-optical signal processing and switching applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.