Abstract

Nematic liquid crystals integrated with metallic resonators (metamaterials) are intriguing hybrid systems, which not only offer added optical functionalities, but also promote strong light-matter interactions. In this report, we show with an analytical model that the electric field generated by a conventional oscillator-based terahertz time domain spectrometer is strong enough to induce partial, all-optical switching of nematic liquid crystals in such hybrid systems. Our analysis provides a robust theoretical footing for the mechanism of all-optical nonlinearity of liquid crystals, which was recently hypothesised to explain an anomalous resonance frequency shift in liquid crystal-loaded terahertz metamaterials. The integration of metallic resonators with nematic liquid crystals offers a robust approach to explore optical nonlinearity within such hybrid material systems in the terahertz range; paves the way towards increased efficiency of existing devices; and broadens the range of applications of liquid crystals in the terahertz frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call