Abstract

In this paper, we proposed an all-optical version of photonic spiking neurons and spike-time-dependent plasticity (STDP) based on the nonlinear optical effects within a micro-ring resonator. In this system, the self-pulsing effect was exploited to implement threshold control, and the equivalent pulse energy required for spiking, calculated by multiplying the input pulse power amplitude with its duration, was about 14.1 pJ. The positive performance of the neurons in the excitability and cascadability tests validated the feasibility of this scheme. Furthermore, two simulations were performed to demonstrate that such an all-optical spiking neural network incorporated with STDP could run stably on a stochastic topology. The essence of such an all-optical spiking neural network is a nonlinear spiking dynamical system that combines the advantages of photonics and spiking neural networks (SNNs), promising access to the high speed and lower consumption inherent to optical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.