Abstract
Quantum photonic processing via electro-optic components typically requires electronic links across different operation environments, especially when interfacing cryogenic components such as superconducting single photon detectors with room-temperature control and readout electronics. However, readout and driving electronics can introduce detrimental parasitic effects. Here we show an all-optical control and readout of a superconducting nanowire single photon detector (SNSPD), completely electrically decoupled from room temperature electronics. We provide the operation power for the superconducting detector via a cryogenic photodiode, and readout single photon detection signals via a cryogenic electro-optic modulator in the same cryostat. This method opens the possibility for control and readout of superconducting circuits, and feedforward for photonic quantum computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.