Abstract
With the recent successes of neural networks (NN) to perform machine-learning tasks, photonic-based NN designs may enable high throughput and low power neuromorphic compute paradigms since they bypass the parasitic charging of capacitive wires. Thus, engineering data-information processors capable of executing NN algorithms with high efficiency is of major importance for applications ranging from pattern recognition to classification. Our hypothesis is, therefore, that if the time-limiting electro-optic conversion of current photonic NN designs could be postponed until the very end of the network, then the execution time of the photonic algorithm is simple the delay of the time-of-flight of photons through the NN, which is on the order of picoseconds for integrated photonics. Exploring such all-optical NN, in this work we discuss two independent approaches for implementing the optical perceptron’s nonlinear activation function based on nanophotonic structures exhibiting i) induced transparency and ii) reverse saturated absorption. Our results show that the all-optical nonlinearity provides about 3 and 7 dB extinction ratios for the two systems considered, respectively, and classification accuracies of an exemplary MNIST task of 97% and near 100% are found, which rivals that of software based trained NNs, yet with ignored noise in the network. Together with a developed concept for an all-optical perceptron, these findings point to the possibility of realizing pure photonic NNs with potentially unmatched throughput and even energy consumption for next generation information processing hardware.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.