Abstract
An all-optical non-resonant photoacoustic spectroscopy system for multicomponent gas detection based on a silicon cantilever optical microphone (SCOM) and an aseismic photoacoustic cell is proposed and demonstrated. The SCOM has a high sensitivity of over 96.25 rad/Pa with sensitivity fluctuation less than ± 1.56 dB between 5 Hz and 250 Hz. Besides, the minimal detectable pressure (MDP) of the sensor is 0.55 μPa·Hz−1/2 at 200 Hz, which indicates that the fabricated sensor has high sensitivity and low noise level. Six different gases of CO2, CO, CH4, C2H6, C2H4, C2H2 are detected at the frequency of 10 Hz, whose detection limits (3σ) are 62.66 ppb, 929.11 ppb, 1494.97 ppb, 212.94 ppb, 1153.36 ppb and 417.61 ppb, respectively. The system achieves high sensitivity and low detection limits for trace gas detection. In addition, the system exhibits seismic performance with suppressing vibration noise by 4.5 times, and achieves long-term stable operation. The proposed non-resonant all-optical PAS multi-component gas detection system exhibits the advantages of anti-vibration performance, low gas consumption and long term stability, which provides a solution for working in complex environments with inherently safe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.