Abstract

SV2A, an essential transporter-like synaptic vesicle protein, is a major target for antiepileptic drugs and a receptor for clostridial neurotoxins including Botox. While SV2A is required for normal levels of evoked neurotransmitter release, the mechanism underlying this role remains unclear. Here, we introduce a new chemogenetic approach for all-optical monitoring of excitation-secretion coupling, and we demonstrate its use in characterizing the SV2A knockout (KO) phenotype in cultured hippocampal neurons. This method employs the HaloTag system to target a robust small-molecule Ca2+ indicator, JF646 -BAPTA, to the presynaptic compartment. The far-red fluorescence of this indicator enables multiplexing with the fluorescent glutamate sensor iGluSnFR for detection of presynaptic Ca2+ influx and glutamate release at the same axonal boutons. Evoked glutamate release probability was reduced in SV2A KO neurons without a change in presynaptic Ca2+ entry, suggesting that SV2A supports vesicle fusion by increasing the functional availability, or efficiency, of the Ca2+ -regulated membrane fusion machinery. KEY POINTS: One of the most prescribed antiepileptic medications, levetiracetam, acts by binding a protein of uncertain molecular function. This transporter-like protein, SV2A, is trafficked to synaptic vesicles and acts to support neurotransmitter release, but the mechanism underlying this function has not been determined In this study, we sought to establish whether SV2A changes Ca2+ signalling at nerve terminals, which is a key regulatory system for synaptic vesicle exocytosis. To do so, we adapted new chemogenetic tools to perform all-optical measurements of presynaptic Ca2+ and glutamate release in neurons lacking SV2A. Our measurements showed that loss of SV2A reduces glutamate release without reducing Ca2+ influx at hippocampal nerve terminals, demonstrating that SV2A increases the likelihood that Ca2+ will trigger synaptic vesicle fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.