Abstract

We have proposed a novel all-optical logic gates based on active plasmonics that may control the electron-photon coupling through an external effect. The phenomenon of surface plasmon resonance (SPR) is basically appeared on attenuated total reflection mirror block. The waveguide-type Kretchmann-Raether configuration with high sensitivity to the metal surface was used for all-optical OR and NAND gates. Here, the double thin metal layers can enhance the confinement of plasmon waves and can be utilized as an output. When the external light source is injected into the thin ZnO film deposited on the facet of a GaAs waveguide, the total refractive index of the thin ZnO layer is changed by the nonlinear refractive index. The proposed waveguide-type configuration was analyzed and optimized using finite-difference time-domain method for all-optical OR and NAND gates. When the external light is injected on the metal layer, the intensity of SPW is decreased by 10.76 dB. However, the reflected light into the waveguide is increased by 2.23 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call