Abstract

Low thermal polarization of nuclear spins is a primary sensitivity limitation for nuclear magnetic resonance. Here we demonstrate optically pumped (microwave-free) nuclear spin polarization of $^{13}\mathrm{C}$ and $^{15}\mathrm{N}$ in $^{15}\mathrm{N}$-doped diamond. $^{15}\mathrm{N}$ polarization enhancements up to $-2000$ above thermal equilibrium are observed in the paramagnetic system $\mathrm{N_s}^{0}$. Nuclear spin polarization is shown to diffuse to bulk $^{13}\mathrm{C}$ with NMR enhancements of $-200$ at room temperature and $-500$ at $\mathrm{240~K}$, enabling a route to microwave-free high-sensitivity NMR study of biological samples in ambient conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call