Abstract

Optical reflectance measurements were performed to determine the hydrogen response characteristics of 20 nm thick Pd 0.6Au 0.4 films. The response time and signal change characteristics were determined as a function of hydrogen concentrations ranging from 0.05% to 4% in a balance of dry CO 2 free air. The detection limit was determined to be 0.05%, with a corresponding response time of 130 s, while at 4% hydrogen concentrations the response time was 5 s at ambient temperatures. A linear decrease of both the signal change and response time was measured within an operating temperature range between 25 °C and 100 °C for a 1% hydrogen in air gas mixture. The sensor response dependence of the Pd 0.6Au 0.4 film with a change in humidity was determined between ambient levels and 95% relative humidity (RH). While the signal change was independent of humidity the response time increased due to water adsorption on the Pd alloy sensing layer. A similar increase in response time was shown for 100 ppm of background CO mixed with 1% hydrogen in nitrogen at room temperature. At an elevated operating temperature of 80 °C, 100 ppm of CO did not affect the sensor response towards 1% hydrogen in a balance of nitrogen. Reliability tests have been performed over a 1-year time period and the sensing specifications have not drifted beyond 2% and 13% of the calibrated signal change and response time, respectively. A response time on the order of seconds and the proven stability of the high alloy content Pd thin film demonstrate the promising attributes of this material for use in an all-optical hydrogen sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.