Abstract

Low remanent magnetization as key prerequisite for the ability of helicity dependent all-optical magnetic switching (AOS) is demonstrated for an artificial zero moment magnet. A heterostructure consisting of two amorphous ferrimagnetic Tb36Fe64 and Tb19Fe81 alloy layers is designed to yield a zero remanent net magnetization at room temperature by means of an antiparallel interfacial exchange coupling of the dominant magnetic moments. The canceling layer magnetizations provide vanishing demagnetization fields and the ability of AOS. Contrary to this, no all-optical switching is observed for single Tb36Fe64 and Tb19Fe81 films. This study provides further evidence that the ability for all-optical magnetic switching is correlated to the remanent sample magnetization and thus to the difference in magnetic moment of the rare-earth and transition-metal sublattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.