Abstract
Pt/InGa/n-Si/SiOx/Pt devices were prepared by using standard chemical and sputtering processes. These systems are diodes comprising a frontside photoactive metal-insulator-semiconductor (MIS) n-Si/SiOx/Pt junction and a backside Pt/InGa/n-Si Ohmic contact. Pt/InGa/n-Si/SiOx/Pt was first characterized by dark-solid-state electrical and impedance measurements. Then, each side of the device was investigated by electrochemical means in the dark and under near-IR illumination at 850 nm in the luminol-H2O2 electrochemiluminescence (ECL) electrolyte. The results suggested the possibility of triggering an all-optical ECL (AO-ECL) at Pt/InGa/n-Si/SiOx/Pt. This was confirmed by studying AO-ECL at the monolithic, all-integrated Pt/InGa/n-Si/SiOx/Pt device, immersed in the ECL electrolyte. The conversion process can occur with good stability and the intensity of the visible emission (440 nm) depends on tunable parameters such as the illumination power density, O2 concentration, or the concentration of added H2O2. These results are important for the next developments of AO-ECL in sensing and microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.