Abstract

Photoresponsive liquid crystal elastomers (LCEs) are a unique class of anisotropic materials capable of undergoing large-scale, macroscopic deformations when exposed to light. Here, surface-aligned, azobenzene-functionalized LCEs are prepared via a radical-mediated, thiol-acrylate chain transfer reaction. A long-lived, macroscopic shape deformation is realized in an LCE composed with an o-fluorinated azobenzene (oF-azo) monomer. Under UV irradiation, the oF-azo LCE exhibits a persistent shape deformation for >72 h. By contrasting the photomechanical response of the oF-azo LCE to analogs prepared from classical and m-fluorinated azobenzene derivatives, the origin of the persistent deformation is clearly attributed to the underlying influence of positional functionalization on the kinetics of cis→trans isomerization. Informed by these studies and enabled by the salient features of light-induced deformations, oF-azo LCEs are demonstrated to undergo all-optical control of shape deformation and shape restoration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.