Abstract

Coherent quantum noise cancellation (CQNC) can be used in optomechanical sensors to surpass the standard quantum limit (SQL). In this paper, we investigate an optomechanical force sensor that uses the CQNC strategy by cascading the optomechanical system with an all-optical effective negative mass oscillator. Specifically, we analyze matching conditions, losses and compare the two possible arrangements in which either the optomechanical or the negative mass system couples first to light. While both of these orderings yield a sub-SQL performance, we find that placing the effective negative mass oscillator before the optomechanical sensor will always be advantageous for realistic parameters. The modular design of the cascaded scheme allows for better control of the sub-systems by avoiding undesirable coupling between system components, while maintaining similar performance to the integrated configuration proposed earlier. We conclude our work with a case study of a micro-optomechanical implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.