Abstract

We propose and demonstrate experimentally, for the first time, a prototype for all-optical ultra-wideband (UWB) transceiver at 500 Mb/s. We report 1) UWB pulse optimization that takes into account the transmitter RF front end and the U.S. federal communications commission (FCC) spectral mask, 2) a new approximate match filter receiver using optical signal processing, and 3) modulation at 500 Mb/s. Our previous optimization of UWB pulse shapes was based only on the FCC spectral mask, without taking into account the frequency response of the RF components (amplifier and antenna) in the UWB transmitter. Here, we modify our pulse optimization technique to ensure that the equivalent isotropic radiated power (EIRP) from the transmitter meets FCC specifications. For the RF hardware used, we achieve 63.6% efficiency over the FCC mask, which yields an 11.6- and a 5.9-dB improvement over Gaussian monocycle and doublet pulses, respectively. We also introduce simple optical signal processing at the receiver that allows the incoming RF signal to be matched against a square pulse whose duration is adapted to the channel. The exact matched filter would require a new optimized pulse that would include not only hardware frequency response but channel effects that vary with antenna placement as well. The proposed approximation allows a simple variation of the pulse duration: an increase to account for pulse expansion in the channel but an upper limit to combat multipath effects. Finally, we demonstrate the optimized pulse and approximate match filter receiver at 500 M/s. We attain a 10-6bit error rate at a 65-cm separation line of sight (LOS) link with simple on-off keying and no forward error correction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call