Abstract
All-inkjet-printing of transistors has received much attention for low cost and flexible integrated circuits. However, most flexible field-effect transistors (FETs) based on the emerging two-dimensional materials suffer from the high cost of substrate and electrode materials. The requirements for high-temperature synthesis and precise control in processing add another layer of complexity. To overcome these issues, low-cost flexible paper-based MoS2 FETs were fabricated by inkjet printing of MoS2 channel materials on paper. Additionally, we proposed and achieved the mask-less and low-temperature formation of source and drain electrodes on paper using in-situ selective-area copper reduction. A low sub-threshold swing of 80 mV/dec, high on/off ratio of 105, and very high turn-on current (Ion) of 200 μA of the paper-based flexible MoS2 FETs were demonstrated using the proposed low-cost and facile all-inkjet-printing technique. The all-inkjet-printing technique assisted by in-situ copper reduction opens new opportunities for low-cost and batch fabrication of paper-based electronic devices in ambient conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.