Abstract

The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call