Abstract

Optoelectronic logic gate devices (OLGDs) have attracted significant attention in high-density information processors; however, multifunctional logic operation in a single device is technically challenging due to the unidirectional electrical transport. In this work, we deliberately design all-in-one OLGDs based on self-powered CdTe/SnSe heterojunction photodetectors. The SnSe nanorod (NR) array is grown on the sputtered CdTe film via a glancing-angle deposition technique to form a heterojunction device. At the interface, the photovoltaic (PV) effect in the CdTe/SnSe heterojunction and the photothermoelectric (PTE) effect from the SnSe NRs are combined together to induce the reversed photocurrent, leading to a unique bipolar spectral response. The competition between PV and PTE in different spectral ranges is thus employed to control the photocurrent polarity, and five basic logic gates of OR, AND, NAND, NOR, and NOT can be performed just with a single heterojunction. Our findings indicate the large potentials of the CdTe/SnSe heterojunctions as logic units in next-generation sensing-computing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call