Abstract
An artificial compound eye consists of multiple apertures that allow for a large field of view (FOV) while maintaining a small size. Each aperture captures a sub-image, and multiple sub-images are needed to reconstruct the full FOV. The reconstruction process is depth-related due to the parallax between adjacent apertures. This paper presents an all-in-focus 3D reconstruction method for a specific type of artificial compound eye called the electronic cluster eye (eCley). The proposed method uses edge matching to address the edge blur and large textureless areas existing in the sub-images. First, edges are extracted from each sub-image, and then a matching operator is applied to match the edges based on their shape context and intensity. This produces a sparse matching result that is then propagated to the whole image. Next, a depth consistency check and refinement method is performed to refine the depth of all sub-images. Finally, the sub-images and depth maps are merged to produce the final all-in-focus image and depth map. The experimental results and comparative analysis demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.