Abstract

Let E_n={x_k=1, x_i+x_j=x_k, x_i \cdot x_j=x_k: i,j,k \in {1,...,n}}. For any integer n \geq 2214, we define a system T \subseteq E_n which has a unique integer solution (a_1,...,a_n). We prove that the numbers a_1,...,a_n are positive and max(a_1,...,a_n)>2^(2^n). For a positive integer n, let f(n) denote the smallest non-negative integer b such that for each system S \subseteq E_n with a unique solution in non-negative integers x_1,...,x_n, this solution belongs to [0,b]^n. We prove that if a function g:N-->N has a single-fold Diophantine representation, then f dominates g. We present a MuPAD code which takes as input a positive integer n, performs an infinite loop, returns a non-negative integer on each iteration, and returns f(n) on each sufficiently high iteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.