Abstract
Speech activity detection (SAD) on channel transmissions is a critical preprocessing task for speech, speaker and language recognition or for further human analysis. This paper presents a feature combination approach to improve SAD on highly channel degraded speech as part of the Defense Advanced Research Projects Agency’s (DARPA) Robust Automatic Transcription of Speech (RATS) program. The key contribution is the feature combination exploration of different novel SAD features based on pitch and spectro-temporal processing and the standard Mel Frequency Cepstral Coefficients (MFCC) acoustic feature. The SAD features are: (1) a GABOR feature representation, followed by a multilayer perceptron (MLP); (2) a feature that combines multiple voicing features and spectral flux measures (Combo); (3) a feature based on subband autocorrelation (SAcC) and MLP postprocessing and (4) a multiband comb-filter F0 (MBCombF0) voicing measure. We present single, pairwise and all feature combinations, show high error reductions from pairwise feature level combination over the MFCC baseline and show that the best performance is achieved by the combination of all features. Index Terms: speech detection, channel-degraded speech, robust voicing features
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.