Abstract

An all-fiber dynamic gain equalizer for flattening Er-doped fiber amplifiers based on a long period fiber grating (LPFG) with rotary refractive index change induced by high-frequency CO2 laser pulses is reported, for the first time to our knowledge. Experimental results show that its transverse load sensitivity is up to 0.37dB/(g·mm-1), which is 9 times higher than that of a normal LPFG induced by the same method. In addition, it is found that the strong orientation-dependence of the transverse load sensitivity of the normal LPFG reported previously has been weakened considerably. Therefore, such a dynamic gain equalizer based on the transverse load and temperature characteristics of this novel LPFG provides a much larger adjustable range and makes packaging of the gain equalizer much easier. A demonstration has been carried out to flatten an Er-doped fibre amplifier to ±0.5dB over a 32nm bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.