Abstract
Spin defects in silicon carbide are promising candidates for quantum sensing applications as they exhibit long coherence times even at room temperature. However, spin readout methods that rely on fluorescence detection can be challenging due to poor photon collection efficiency. Here, we demonstrate coherent spin control and all-electrical readout of a small ensemble of spins in a SiC junction diode using pulsed electrically detected magnetic resonance. A lock-in detection scheme based on a three stage modulation cycle is implemented, significantly enhancing the signal-to-noise ratio. This technique enabled observation of coherent spin dynamics, specifically Rabi spin nutation, spin dephasing, and spin decoherence. The use of these protocols for magnetometry applications is evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.