Abstract

Wireless sensor networks are deployed to monitor the surrounding physical environments and they also act as the physical environments of parasitic sensor networks, whose purpose is analyzing the contextual privacy and obtaining valuable information from the original wireless sensor networks. Recently, contextual privacy issues associated with wireless communication in open spaces have not been thoroughly addressed and one of the most important challenges is protecting the source locations of the valuable packages. In this paper, we design an all-direction random routing algorithm (ARR) for source-location protecting against parasitic sensor networks. For each package, the routing process of ARR is divided into three stages, i.e., selecting a proper agent node, delivering the package to the agent node from the source node, and sending it to the final destination from the agent node. In ARR, the agent nodes are randomly chosen in all directions by the source nodes using only local decisions, rather than knowing the whole topology of the networks. ARR can control the distributions of the routing paths in a very flexible way and it can guarantee that the routing paths with the same source and destination are totally different from each other. Therefore, it is extremely difficult for the parasitic sensor nodes to trace the packages back to the source nodes. Simulation results illustrate that ARR perfectly confuses the parasitic nodes and obviously outperforms traditional routing-based schemes in protecting source-location privacy, with a marginal increase in the communication overhead and energy consumption. In addition, ARR also requires much less energy than the cloud-based source-location privacy protection schemes.

Highlights

  • Supported by the rapid development of information techniques, circuit engineering, sensor technology, and artificial intelligence, wireless sensor networks (WSNs) have been widely used in the fields of habitat monitoring, target tracking, and military surveillance [1,2,3,4,5]

  • The shortest path routing algorithm always tries to find the shortest path from the source node to the sink node, in order to transmit the packages; the directed diffusion routing algorithm always selects the path with the highest value for timeliness to deliver the packages; to deliver the packages in a totally distributed way and improve the robustness of the routing process, the GPSR routing algorithm always employs the Greedy Forwarding Pattern to move the package in the networks and employs

  • The main contributions of this paper can be summarized as follows: (1) we propose a new scheme to construct shared keys between neighboring nodes, which is integrated with an identity authentication function to defend against the joining of parasitic nodes; (2) we propose a novel all-direction random routing approach which can significantly improve the diversities of the routing paths, with a very marginal increase in the communication overhead; (3) we conduct a series of experiments to evaluate the performance of the proposed routing algorithm with that of shortest path routing, greedy perimeter stateless routing, and phantom routing

Read more

Summary

Introduction

Supported by the rapid development of information techniques, circuit engineering, sensor technology, and artificial intelligence, wireless sensor networks (WSNs) have been widely used in the fields of habitat monitoring, target tracking, and military surveillance [1,2,3,4,5]. To protect source location privacy, several routing-based approaches have been proposed, which assume that the parasitic nodes have a limited overhearing capability, e.g., similar to a sensor node’s transmission range This is reasonable considering that the adversaries can’t monitor the whole network at the same time; otherwise they wouldn’t need to employ a parasitic network. The main contributions of this paper can be summarized as follows: (1) we propose a new scheme to construct shared keys between neighboring nodes, which is integrated with an identity authentication function to defend against the joining of parasitic nodes; (2) we propose a novel all-direction random routing approach which can significantly improve the diversities of the routing paths, with a very marginal increase in the communication overhead; (3) we conduct a series of experiments to evaluate the performance of the proposed routing algorithm with that of shortest path routing, greedy perimeter stateless routing, and phantom routing.

Related Work
Network and Parasitic Node Models
Pre-Deployment Phase
If at node
Package Delivery from Source Node to Agent Node Defined by L
Package
Analysis and Discussion of ARR
Performance Analysis and Evaluation
12 Number
11. Source
Average Time Delay with Different Hops
Energy Consumption
14. Average
Findings
Conclusion andthe
Conclusions and Future Work

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.