Abstract

Metasurfaces composed of artificially fabricated nano-sized structures have shown extraordinary potential for the precise control of light. Here, we demonstrate for the first time, a metasurface application to reduce the axial size of the point spread function in laser scanning microscopy. The all-dielectric metasurface has wavelength selectivity over the whole visible range, and confinement of the excitation point spread function of the electromagnetic field. These two unique features allow the metasurface to be applied to laser scanning microscope systems. Numerical and experimental demonstrations of the proposed all-dielectric metasurface are reported, showing sharp implicit spectral filtering in the visible range and enhanced axial confinement by observing actin filaments in NIH3T3 cells. We believe that our approach can provide a useful insight on the practicality of using metasurfaces as an imaging platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call