Abstract

In this paper, we demonstrate a high-efficiency and broadband circular polarizer based on cascaded tensor Huygens surface capable of operating in the near-infrared region. The high efficiency originates from the simultaneous excitation of the Mie-type electric and magnetic dipole resonances within an all-dielectric rotationally twisted strips array. Due to the symmetry breaking of the structure in the light propagation, one state of the circularly polarized light can pass through freely, while the other state is largely blocked. The maximum polarization transmission reaches 0.97 with a polarization suppression ratio of 911:1, which represents a major advance in the performance compared with previously reported circular polarizers. The proposed metamaterial possessing the merits of high efficiency and simple inclusions has potentials for applications in biological detector, optical communication and sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.