Abstract

GeTe-based pseudo-binary (GeTe)x (AgSbTe2 )100- x (TAGS-x) is recognized as a promising p-type mid-temperature thermoelectric material with outstanding thermoelectric performance; nevertheless, its intrinsic structural transition and metastable microstructure (due to Ag/Sb/Ge localization) restrict the long-time application of TAGS-x in practical thermoelectric devices. In this work, a series of non-stoichiometric (GeTe)x (Ag1- δ Sb1+ δ Te2+ δ )100- x (x= 85∼50; δ=≈0.20-0.23), referred to as δ-TAGS-x, with all cubic phase over the entire testing temperature range (300-773 K), is synthesized. Through optimization of crystal symmetry and microstructure, a state-of-the-art ZTmax of 1.86 at 673 K and average ZTavg of 1.43 at ≈323-773 K are realized in δ-TAGS-75 (δ= 0.21), which is the highest value among all reported cubic-phase GeTe-based thermoelectric systems so far. As compared with stoichiometric TAGS-x, the remarkable thermoelectric achieved in cubic δ-TAGS-x can be attributed to the alleviation of highly (electrical and thermal) resistive grain boundary Ag8 GeTe6 phase. Moreover, δ-TAGS-x exhibits much better mechanical properties than stoichiometric TAGS-x, together with the outstanding thermoelectric performance, leading to a robust single-leg thermoelectric module with ηmax of ≈10.2% and Pmax of ≈0.191W. The finding in this work indicates the great application potential of non-stoichiometric δ-TAGS-x in the field of mid-temperature waste heat harvesting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.