Abstract

As many animals form aggregations, group-living is believed to be adaptive. It is not clear, though, if clonal aggregations should have spatial structure, as protecting clone-mates is the genetic equivalent of protecting self. ‘Fitness discounting’ theory states that immediate reproductive opportunities are of greater value than are delayed opportunities. Thus, we hypothesized that spatial structure should exist in colonies of unequal-aged, clonal organisms like aphids. We predicted that, compared to reproductive (5th instar) individuals, young (2nd and 3rd instar) juveniles (i.e., the youngest instars capable of emitting an alarm signal) should occupy the most dangerous feeding positions. As individuals approach reproductive maturity and alarm signals decline (4th instar), they should occupy increasingly safer feeding positions. We tested these predictions by documenting the spatial distribution of two (green and pink) pea aphid, Acyrthosiphon pisum, asexual lineages (“clones”) at 1, 3, 6, 24, 48, 72, 96, and 120 h after host plant colonization. Confirming our hypothesis, we found that early (2nd and 3rd) instar aphids occupied feeding positions with the highest predation risk. Upon reaching the penultimate (4th) instar, individuals dispersed from the colony to colonize other leaves. Thus, pea aphid colonies are not random aggregations; aphid colony structure can be explained by fitness discounting theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.