Abstract

Less than five years ago we reported the NHC-catalysed (4+2) annulation of dienol ethers and unsaturated acyl fluorides. From a mechanistic perspective, this reaction likely involves a vinylogous ­Michael addition followed by an aldol/β-lactonisation cascade. In this account, the discovery of this reaction and ensuing studies into its mechanism and utility in multistep synthesis will be examined. The subsequent development of chiral catalysts designed for this reaction and the achievement of a first-generation and later second-generation approach to an enantioselective variant of this reaction will be discussed. Finally, related redox isomerisation cascades leading to benzaldehydes will be introduced, as will reactions in the field of NHC catalysis that exploit similar reaction cascades. 1 Introduction 2 Reaction Design and Discovery 3 Mechanistic Studies and β-Lactone Interception 4 Enantioselective Cyclohexenyl β-Lactone Synthesis 5 Enantioselective Cyclohexadiene Synthesis 6 Redox Isomerisation 7 Related NHC Catalysis 8 Conclusions

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.