Abstract

Prions are self-replicative protein particles lacking nucleic acids. Originally discovered for causing infectious neurodegenerative disorders, they have also been found to play several physiological roles in a variety of species. Functional and pathogenic prions share a common mechanism of replication, characterized by the ability of an amyloid conformer to propagate by inducing the conversion of its physiological, soluble counterpart. Since time-resolved biophysical experiments are currently unable to provide full reconstruction of the physico-chemical mechanisms responsible for prion replication, one must rely on computer simulations. In this work, we show that a recently developed algorithm called Self-Consistent Path Sampling (SCPS) overcomes the computational limitations of plain MD and provides a viable tool to investigate prion replication processes using state-of-the-art all-atom force fields in explicit solvent. First, we validate the reliability of SCPS simulations by characterizing the folding of a class of small proteins and comparing against the results of plain MD simulations. Next, we use SCPS to investigate the replication of the prion forming domain of HET-s, a physiological fungal prion for which high-resolution structural data are available. Our atomistic reconstruction shows remarkable similarities with a previously reported mechanism of mammalian PrPSc propagation obtained using a simpler and more approximate path sampling algorithm. Together, these results suggest that the propagation of prions generated by evolutionary distant proteins may share common features. In particular, in both these cases, prions propagate their conformation through a very similar templating mechanism.

Highlights

  • The phenomenon of protein-based inheritance characterizes prions, proteins appearing at various levels along the evolutionary scale that are capable of propagating their conformationally encoded information in absence of nucleic acids [1]

  • By propagating the information encoded in their conformation, prions exemplify the phenomenon of protein-based inheritance

  • HETs prion replication simulated with an all-atom force field in explicit solvent

Read more

Summary

Author summary

Prions are proteins capable of replicating in absence of nucleic acids. By propagating the information encoded in their conformation, prions exemplify the phenomenon of protein-based inheritance. These peculiar agents are associated with neurodegenerative. HETs prion replication simulated with an all-atom force field in explicit solvent. Giovanni Spagnolli is a recipient of a fellowship from Fondazione Telethon. Emiliano Biasini is an Assistant Telethon Scientist at the Dulbecco Telethon Institute (Fondazione Telethon, Italy). We apply a recently developed computational method to study the propagation mechanism of the fungal prion HET-s, using a realistic all-atom model.

Introduction
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.