Abstract

BackgroundThe promoters of housekeeping genes are well-bound by RNA polymerase II (RNAP) in different tissues. Although the promoters of these genes are known to contain CpG islands, the specific DNA sequences that are associated with high RNAP binding to housekeeping promoters has not been described.ResultsChIP-chip experiments from three mouse tissues, liver, heart ventricles, and primary keratinocytes, indicate that 94% of promoters have similar RNAP binding, ranging from well-bound to poorly-bound in all tissues. Using all 8-base pair long sequences as a test set, we have identified the DNA sequences that are enriched in promoters of housekeeping genes, focusing on those DNA sequences which are preferentially localized in the proximal promoter. We observe a bimodal distribution. Virtually all sequences enriched in promoters with high RNAP binding values contain a CpG dinucleotide. These results suggest that only transcription factor binding sites (TFBS) that contain the CpG dinucleotide are involved in RNAP binding to housekeeping promoters while TFBS that do not contain a CpG are involved in regulated promoter activity. Abundant 8-mers that are preferentially localized in the proximal promoters and exhibit the best enrichment in RNAP bound promoters are all variants of six known CpG-containing TFBS: ETS, NRF-1, BoxA, SP1, CRE, and E-Box. The frequency of these six DNA motifs can predict housekeeping promoters as accurately as the presence of a CpG island, suggesting that they are the structural elements critical for CpG island function. Experimental EMSA results demonstrate that methylation of the CpG in the ETS, NRF-1, and SP1 motifs prevent DNA binding in nuclear extracts in both keratinocytes and liver.ConclusionIn general, TFBS that do not contain a CpG are involved in regulated gene expression while TFBS that contain a CpG are involved in constitutive gene expression with some CpG containing sequences also involved in inducible and tissue specific gene regulation. These TFBS are not bound when the CpG is methylated. Unmethylated CpG dinucleotides in the TFBS in CpG islands allow the transcription factors to find their binding sites which occur only in promoters, in turn localizing RNAP to promoters.

Highlights

  • The promoters of housekeeping genes are well-bound by RNA polymerase II (RNAP) in different tissues

  • We identified promoters that are bound by RNAP in multiple tissues and determined the association between the presence of 8-mers in these promoters and the extent of RNAP binding to the promoter

  • Looking at RNAP binding to housekeeping promoters, we observed a bimodal distribution: only 8-mers with the CpG dinucleotide are in the class of sequences most associated with RNAP binding and only 8-mers without a CpG are in the class least associated with RNAP binding

Read more

Summary

Introduction

The promoters of housekeeping genes are well-bound by RNA polymerase II (RNAP) in different tissues. The promoters of these genes are known to contain CpG islands, the specific DNA sequences that are associated with high RNAP binding to housekeeping promoters has not been described. The proximal promoter extends from -200 bp to the transcriptional start site (TSS) and contains transcription factor binding sites (TFBS) that are critical for the recruitment of RNA polymerase II (RNAP) to DNA [2,3,4]. The CpG dinucleotide occurs at 20% of the expected frequency [5] and is typically methylated both in cell cuture and animal tissues [6,7]. The presence of CpG islands is associated with gene regulatory regions [9] and in the promoters of genes generally correlates with binding by RNA polymerase II (RNAP) [9]. Promoters of housekeeping genes are constitutively bound by RNAP in all tissues while regulated promoters, either tissue specific or inducible, are selectively bound by RNAP in only certain tissue(s) or contexts respectively [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call