Abstract

Integrating miniaturized and wearable energy storage units with smart responsive functions into multifunctional wearable energy systems is becoming a new growth direction for wearable applications. However, developing a universal, effective, and on-demand strategy towards multifunctional wearable energy systems with a synergistic combination of embodied energy and smart responsive effect is still challenging. Herein, we report an all-3D-printing strategy to manufacture and study multifunctional wearable energy systems, in which exceptional zinc-ion storage capability and smart responsive effect are both embodied synergistically. Rationally tuned in-plane electrodes extruded from 3D printable inks ensure efficient charge transport, thereby leading to exceptional electrochemical behaviors including high device capacitance of 760.0 mF cm−2, moderate operating voltage of 1.8 V, high energy density of 342.0 μWh cm−2, and excellent cycling stability. By further incorporating in-plane zinc-ion storage devices with biocompatible responsive materials through a same approach, sophisticatedly designed all-3D-printed multifunctional wearable energy systems are built and worn as an on-demand "energy ring" for intelligent energy storing/releasing. Reliable energy supplying to wearable electronics is achieved, and a smart shape deformability along with the ON-OFF control to electronic circuit under thermal stimuli is accomplished simultaneously. This work opens up new inspirations towards new-generation smart multifunctional wearable/flexible energy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.